УДК 338.012

С. П. Монгуш

ФГБУН «Тувинский институт комплексного освоения природных ресурсов Сибирского отделения Российской Академии наук», Кызыл, e-mail: fqkey@mail.ru

О. И. Кальная

ФГБУН «Тувинский институт комплексного освоения природных ресурсов Сибирского отделения Российской Академии наук», Кызыл, e-mail: kalnaja@mail.ru

О. Д. Аюнова

ФГБУН «Тувинский институт комплексного освоения природных ресурсов Сибирского отделения Российской Академии наук», Кызыл, e-mail: ajunova@inbox.ru

АСПЕКТЫ КОНЪЮКТУРНОГО РЫНКА НЕКОТОРЫХ ЦЕННЫХ КОМПОНЕНТОВ ХОВУ-АКСЫНСКОГО НИКЕЛЬ-КОБАЛЬТОВОГО МЕСТОРОЖДЕНИЯ И ХВОСТОХРАНИЛИЩ КОМБИНАТА «ТУВАКОБАЛЬТ»

Ключевые слова: месторождение Хову-Аксы, ценные компоненты, горно-обогатительного комбинат, хвостохранилища, инвестиции.

В статье рассматриваются аспекты конъюнктурного рынка некоторых компонентов Хову-Аксынского арсенидного никель-кобальтового месторождения, на базе которого работал в 1970-1990 гг. горно-обогатительный комбинат «Тувакобальт» (Чеди-Хольский район, Республика Тыва), стоимость компонентов на мировых рынках металлов. Хову-Аксинское месторождение полностью не выработано и имеет экономический потенциал для дальнейшей его разработки. В результате деятельности комбината в хвостохранилищах скопились отходы гидрометаллургического передела, которые содержат достаточно большое количество ценных элементов – Co (0,14-0,21%), Ni (0,15-0,29%), Bi (0,01-0,02%), Ag (24-98 г/т), Cu (0,14%), Zn (0,11%), Au (60 мг/т), As (3,5-6,4%), и в настоящее время представляют собой месторождение техногенного характера. Возрождению горнодобывающей деятельности в районе месторождения Хову-Аксы может способствовать переработка отходов комбината. Вместе с тем, выделен основной негативный компонент, тормозящий добывающую отрасль региона – экономическая несостоятельность республики. По данным регионального агентства (Эксперт РА) инвестиционный климат Тывы относиться к регионам с низким потенциалом и экстремальным риском. Развитие мировой экономики регулирует спрос и потребление меди, цинка, кобальта, висмута и других ценных компонентов, содержащихся на месторождении Хову-Аксы. Мировой рынок цветных металлов за последние десятилетия был неравномерным, испытывал колебания, подвергаясь воздействию событий и процессов глобального масштаба (кризисы). Но вступление России в ВТО может дать дополнительные преимущества в продвижении на зарубежные рынки продукции металлургической отрасли, что может принести нашему региону потенциальных инвесторов.

Введение

В условиях современного научнотехнического прогресса главным вопросом экономической политики стало обеспечение высокой эффективности производства, как результат дефицита природных ресурсов России, где особую роль играет комплексное и экономическое использование всех видов сырья с учетом их рационального внедрения в технологический процесс. В интересах нынешнего и будущих поколений разрабатываются различные государственные программы, направленные на обеспечение рационального использования и воспроизводства природоресурсного потенциала Российской Федерации, такие как «Охрана окружающей среды» и «Воспроизводство и использование природных ресурсов» [1; 2]. В программах разработаны дополнительные меры по повышению эффективности использования в народном хозяйстве минеральносырьевых ресурсов, в которых одной из основных задач выступает утилизация (переработка) отходов горно-металлургического производства.

В Центральной Туве источником добычи цветных и благородных металлов может служить не полностью выработанное арсенидно-никель-кобальтовое месторождение Хову-Аксы, а также накопленные ценные металлы и мышьяк

в хвостохранилищах горно-обогатительного комбината (ГОКа) «Тувакобальт», работавшего на базе Хову-Аксинского месторождения с 1970 г. по 1991 г. [3].

Цель исследования: изучить некоторые аспекты конъюнктуры рынка компонентов, которые залегают в пределах окончательно не выработанного Хову-Аксинского арсенидно-кобальтмедно-никелевого месторождения, и содержатся в хвостохранилищах отходов ГОКа «Тувакобальт», расположенных в Чеди-Хольском районе Республики Тыва.

Объектом настоящего исследования выступает рыночная ценовая стоимость различныхценных химических элементов и соединений Хову-Аксинского месторождения, а также первичных и вторичныхценныхкомпонентов, хранящихся в отходах ГОКа «Тувакобальт».

Материалѕ и методы исследования

Хову-Аксинское арсенидно-кобальтмедно-никелевое месторождение расположено на северном макросклоне хр. Восточный Танну-Ола (рисунок). На базе месторождения в период 1970— 1991 гг. работал комбинат «Тувакобальт», который производил высококачественный медно-никель-кобальтовый концентрат по аммиачно-карбонатной технологии [4].

Отходы комбината представляли собой гидрометаллургический переделруд и складировались в хвостохранилища (карты-накопители), которые представляют собой прямоугольные емкости размером 250×50 м, глубиной 11,0–16,5 м, обвалованные дамбами из вынутых грунтов. Дно и борта емкостей защищены противофильтрационным экраном из полиэтиленовой пленки толщиной 0,5 мм, уложенной на подстилающий слой песка толщиной 20 см и защищенной сверху песчаным слоем толщиной 40 см.

Добыча арсенидно-кобальтовой руды составляла от 38 до 75 тыс. т в год [5]. В настоящее время деятельность комбината «Тувакобальт» остановлена, последний является федеральной собственностью и находится в Госрезерве. Объем оставшихся в недрах Хову-Аксынского месторождения ресурсов кобальта и сопутствующих ценных компонентов превышает количество балансовых запасов, утвержденных ГКЗ СССР в 1964 г., на начало проектирования ГОКа «Тувакобальт», и по кобальту составляет 13,532 тыс. т [5] (таблица).

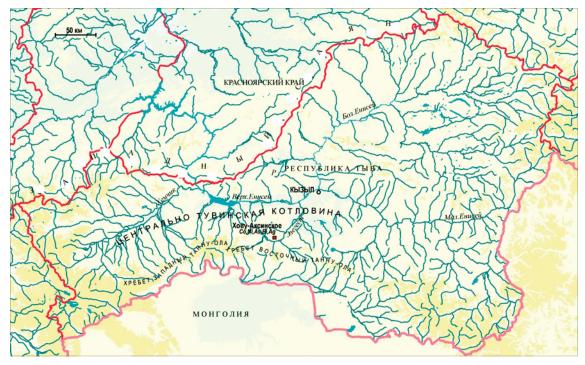


Схема расположения Хову-Аксинского месторождения в пределах Республики Тыва

Характеристика промышленных запасов Хову-Аксынского месторождения
(на 01.06.1993 г.)

Категория запасов	Компонент	Запасы: руда, тыс. т, металлы-тонны; содержание металлов – %, серебро – г/т			
		По месторождению Хову-Аксы	Участок Юж- ный	Участок Се- верный	Участки Про- межуточный Средний и др.
B + C1	Руда	353	93	216	44
	Кобальт	7824 (2,22)	2533 (2,53)	4689 (2,17)	782 (1,78)
	Никель	10100 (2,86)	1400 (1,51)	6600 (3,06)	2100 (4,77)
C2	Руда	343	40	201	102
	Кобальт	5708 (1,66)	996 (2,49)	3928 (1,95)	784 (0,77)
	Никель	6600 (1,92)	800 (2,0)	4400 (2,19)	1400 (1,37)
B+C1+2	уда	696	133	417	146
	Кобальт	13532 (1,94)	3349 (2,52)	8617 (2,07)	1566 (1,07)
	Никель	16700 (2,4)	2200 (1,65)	11000 (2,64)	3500 (1,37)
C2	Висмут	342 (0,09)	39 (0,03)	253 (0,12)	50 (0,13)
	Мышьяк	54200 (14,01)	20000 (14,9)	27800 (13,0)	6400 (16,41)
	Медь	2400 (0,62)	700 (0,52)	1400 (0,65)	300 (0,77)
	Серебро**	Руд = 230;51 (222)	9 (70)	42 (194)	(24–2900)

Отходы же гидрометаллургического передела бывшего ГОКа, складированные в хвостохранилищах, заключают в себе около 2 млн м³ шлама с промышленными концентрациями и запасами кобальта, никеляи меди (по 2 тыс. т), серебра (около 100 т) и не менее чем 100 тыс. т мышьяка при среднем содержании 3,3 %, представляющих собой техногенное месторождение промышленного значения [6].

Промышленные запасы Хову-Аксынского месторождения позволяют возродить горно-металлургическое производство, ориентированное на добычу и глубокую переработку арсенидных никель-кобальтовых руд и техногенных отходов гидрометаллургического передела ГОКа «Тувакобальт» [5: 7]

Для реализации этой цели в ТувИКОПР СО РАН проведены научные и опытно-конструкторские исследования по разработке экологически щадящих технологий и обогатительного оборудования комплексного извлечения ценных компонентов из арсенидных руд сложного состава, а также производства новых видов товарной продукции на основе кобальта, никеля, меди, мышьяка, благородных металлов [8; 9].

Результаты исследования и их обсуждение

За последние 25 лет на мировом рынке кобальта произошли значимые изменения, в частности наблюдается увеличение объемов производства металла из окисленных никелевых руд, одновременно производство из медесодержащих руд снизилось. Со стороны спроса в мировой экономике наблюдается значительный рост потребленияданного металлав силу уникальности его свойств, в частности: в металлообрабатывающей промышленности (производство высокоэффективных режущих инструментов), в производстве красящих пигментов и керамики, гальванических процессах и производстве автомобильных шин, сиккативов, постоянных магнитов, синтетических алмазов и кормов для животных. Растущий спрос на аккумуляторы в ноутбуках, планшетных компьютерах, мобильных телефонах и других портативных устройствах является самым большим фактором роста потребления кобальта. Кроме того, автомобильная промышленность также влияет на спрос кобальта, так как ожидается, что в ближайшие годы будет интенсивно увеличиваться производство гибридных электрических транспортных средств.

Цены на кобальт в первой половине 2016 г. находились ниже среднего уровня в рамках последнего десятилетия и колебались в пределах 23–26 долл./кг. Аналитики отмечают, что цены на кобальт в ближайшие годы, вероятно, сохранятся на уровне 20–30 долл./кг по причине избытка металла на мировом рынке [10].

В настоящее время экологические проблемы дали толчок к росту использования электрических автомобилей, а они в свою очередь требуют огромной мощности, в тысячу раз сильнее, чем обычный телефон (смартфон), таким образом, увеличивая спрос на никель, медь, кобальт, литий. В 2015 году цена никеля поднималась в ходе торгов до \$12135-12380 за тонну, стоимость меди поднялась на 1,3 % и составляла \$6920,25 за тонну. Данные металлы входят в состав руд Хову-Аксынского месторождения (таблица), но в настоящее время не добываются. Из-за неэффективности производства (высокой себестоимости концентрата) работа ГОКа «Тувакобальт» была остановлена в 1991 году.

Тувинскими учеными ТувИКОПР СО РАН были подсчитаны различные варианты инвестиционного возрождения производства. Так, Д.Ф. Дабиев рассчитал два варианта восстановления ГОКа в Хову-Аксах [11]:

- 1) восстановление с применением традиционных технологий извлечения сырья. При реализации первого варианта, для восстановления Хову-Аксынского месторождения кобальт-никелевых арсенидных руд необходимо 1218,7 млн руб., при этом рентабельность проекта будет невысокой. Так, чистый дисконтированный доход (ЧДД) оценивается в 119,9 млн руб., внутренняя норма доходности 12,9%.
- 2) восстановление с применением инновационных технологий извлечения сырья. При реализации второго варианта, т.е. при восстановлении ГОКа «Тувакобальт» с применением инновационных технологий извлечения сырья, инвестиционные вложения составят 1406,4 млн руб. Рентабельность второго варианта будет выше, ЧДД проекта оценивается в 436,8 млн руб., индекс доходности 1,35.

Создание на территории республики развитого горно-металлургического комплекса позволило бы полностью перерабатывать не только имеющиеся запасы и ресурсы месторождения Хову-Аксы, но и переработать шламы и отходы ГОКа. В перспективе при втором варианте возможно формирование в центральном макрорайоне Республики Тыва развитого горнопромышленного комплекса, ориентированного на выпуск конечной продукции. При этом не только будет восстановлен комбинат, но и будут отрабатываться хвосты месторождения, в котором также сосредоточены значительные запасы полезных ископаемых.

Реализация второго варианта с применением инновационных технологий извлечения сырья предполагает обеспечение практически замкнутого производственного цикла с минимальной антропогенной нагрузкой на окружающую среду. Проект будет иметь и экономическую, и социальную, и экологическую эффективность [12].

Но в настоящее время инвестиционный потенциал Республики Тыва весьма низок, и привлечение крупного заинтересованного инвестора для возрождения производства и дальнейшей переработки отходов комбината «Тувакобальт» в ближайшей перспективе экономического развития Тывы не предусмотрено.

По данным регионального агентства (Эксперт РА) инвестиционный климат Тывы относиться к регионам с низким потенциалом и экстремальным риском (2017 г. – средневзвешенный индекс риска составил 0,528, по сравнению с 2016 г. снизился на 0,065) [13]. С такими данными привлечение крупного инвестора для региона проблематично, ведь суть инвестиционных вложений - это умножение вложенного капитала, т. е. обеспечение благосостояния в будущем и получение прибыли. Инвестиции в добывающей отрасли в Тыве за 2015 год составили всего – 4710,3 млн руб., а доля добычи полезных ископаемых в валовой добавленной стоимости республики составила 9,8% в общей структуре экономики территории. Но спрос на компоненты данного месторождения может дать толчок к выходу из нынешней тупиковой ситуации, образовавшейся после закрытия комбината. Правительством Республики Тыва проводятся все возможные мероприятия по устранению негативного климата инвестиционного «голода».

В настоящее время хвостохранилища комбината «Тувакобальт», содержащие достаточно большое количество соединений мышьяка, большей частью не рекультивированы, и представляют собой объект экологической напряженности в республике. В результате ветровой деятельности происходит заражение почвенного покрова и растительности мышьяком, разрушение изоляционного материала карт-накопителей способствует проникновению соединений мышьяка и тяжелых металлов в подземные воды. В связи с этим Правительством Республики принято решение о консервации хвостохранилищ (как месторождения техногенного характера) путем их рекультивации (засыпки открытых карт-накопителей почвенным слоем мощностью до 0,5 м и последующим высевом на площадках многолетних трав).

Выводы

Развитие мировой экономики регулирует спрос и потребление меди, цинка, кобальта, висмута и других ценных компонентов, содержащихся на месторождении Хову-Аксы. Мировой рынок цветных металлов за последние десятилетия был неравномерным, испытывал колебания, подвергаясь воздействию событий и процессов глобального масштаба (кризисы). Но вступление России в ВТО может дать дополнительные преимущества в продвижении на зарубежные рынки продукции металлургической отрасли, что может принести нашему региону потенциальных инвесторов. Внедрение комплексных инновационных технологий для возрождения комбината «Тувакобальт» на основе месторождения и переработки хвостохранилищ с целью извлечения ценных компонентов на данный момент для Республики Тыва, как дотационного региона, является экономически не выгодным, поскольку требует огромных технико-экономических вложений. Приемлемым вариантом является консервирование самого месторождения и безопасное захоронение отходов комбината путем рекультивации для последующей их переработки.

Работа выполнена при поддержке гранта РФФИ № 17-45-170588 p_а «Эко-геохимическая модель трансформации вещества Co-Ni-Cu-арсенидных отходов обогащения руд месторождения Хову-Аксы (комбинат «Тувакобальт», Республика Тыва) с разработкой схемы рекультивации территорий».

Библиографический список

- 1. Постановление Правительства РФ от 15.04.2014 № 326 (ред. от 30.03.2018) «Об утверждении государственной программы Российской Федерации «Охрана окружающей среды» на 2012—2020 годы» [Электронный ресурс]. Режим доступа: http://www.consultant.ru/document/cons_doc_LAW 162183/, свободный.
- 2. Постановление Правительства РФ от 15.04.2014 № 322 (ред. от 30.03.2018) «Об утверждении государственной программы Российской Федерации "Воспроизводство и использование природных ресурсов"» [Электронный ресурс]. Режим доступа: http://www.consultant.ru/document/cons_doc_LAW_162083/, свободный.
- 3. Забелин В.И. Распределение токсичных химических элементов в природных и антропогенных средах на территории бывшего ГОКа «Тувакобальт» // Состояние и освоение природных ресурсов Тувы и сопредельных регионов Центральной Азии. Эколого-экономические проблемы природопользования: Вып. 14 / Отв. ред. докт. геол.-мин. наук В.И. Лебедев [Электронный ресурс]. Кызыл: ТувИКОПР СО РАН, 2016. С. 119–128. Режим доступа: https://elibrary.ru/author_items.asp, свободный.
- 4. Бортникова С.В., Гаськова О.Л., Бессонова Е.П. Геохимия техногенных систем [Электронный ресурс]. Новосибирск: ИГМ СО РАН,2006. 169 с. Режим доступа: http://www.geokniga.org/bookfiles/geokniga-geohimiya-tehnogennyh-sistem.pdf, свободный.

- 5. Лебедев В.И. Необходимость возрождения кобальтового производства в Туве на базе освоения запасов руд Хову-Аксынского месторождения и техногенных отходов ГОК «ТУ-ВАКОБАЛЬТ» // Евразийское научное объединение [Электронный ресурс]. 2016. Январь. № 12 (13). С. 141–144. Режим доступа: http://esa-conference.ru/wp-content/uploads/files/pdf/Lebedev-Vladimir-Ilich.pdf, свободный.
- 6. Забелин В.И. Негативные экологические последствия разработки месторождений полезных ископаемых в России // Проблемы анализа риска [Электронный ресурс]. 2018. Т. 15. № 2. С. 88–95. Режим доступа: https://elibrary.ru/item.asp?id=34941839, свободный.
- 7. Лебедев В.И. Арсенидное кобальтовое месторождение Хову-Аксы: проблемы возрождения уникального кобальтового производства в Туве // Уникальные исследования XXI века [Электронный ресурс]. − 2015. − № 3 (3). − С. 15−25. − Режим доступа: http://www.docme.ru/doc/1560727/arsenidnoe-kobal. tovoe-mestorozhdenie-hovu-aksy-problemy-v, свободный.
- 8. Копылов Н.И., Каминский Ю.Д. Сульфидирующий обжиг отвалов комбината «Тувакобальт» // Плаксинские чтения 2013. Инновационные процессы комплексной и глубокой переработки минерального сырья: материалы Междунар. совещ. (16–19.09.2013, Томск) / под общ. ред. акад. РАН В.А. Чантурия; отв. ред. канд. техн. наук Т.В. Чекушина [Электронный ресурс]. Томск: Изд-во ТПУ, 2013. С. 405–408. Режим доступа: http://www.lib.tpu.ru/fulltext/c/2013/C44/148.pdf, свободный.
- 9. Молдурушку М.О., Кара-Сал Б.К., Чульдум К.К. Исследование состава полученных продуктов обжига и выщелачивания при переработке отходов комбината «Тувакобальт» // Современные наукоёмкие технологии [Электронный ресурс]. − 2016. − № 11. − С. 270–273. − Режим доступа: http://top-technologies.ru/ru/article/view?id=36398, свободный.
- 10. Мировые цены на металл [Электронный ресурс]. Режим доступа: http://www.ereport.ru/articles/commod/cobalt.htm, свободный.
- 11. Дабиев Д.Ф., Соян М.К. Оценка экономической эффективности создания горно-металлургического комплекса «Тувакобальт» // Вестн. НГУ. Серия: Социально-экономические науки [Электронный ресурс]. 2008. N24. Режим доступа: https://cyberleninka.ru/article/n/otsenka-ekonomicheskoyeffektivnosti-sozdaniya-gorno-metallurgicheskogo-kompleksa-tuvakobalt, свободный.
- 12. Дабиев Д.Ф. Оценка восстановления ГОК Тувакобальт: учёт экологического фактора // Новые исследования Тувы [Электронный ресурс]. 2014. № 1. Режим доступа: https://www.tuva.asia/journal/issue 21/6981-dabiev.html, свободный.
- 13. Инвестиционный рейтинг регионов [Электронный ресурс]. Режим доступа: https://raexpert.ru/rankingtable/region_climat/2015/tab01/, свободный.