УДК 330.51

Е. Д. Стрельцова

ФГБОУ ВО «Южно-российский государственный политехнический университет (НПИ) имени М.И. Платова», Новочеркасск, e-mail: el_strel@mail.ru

Е. П. Мурат

ФГАОУ ВО «Южный федеральный университет», Ростов-на-Дону, e-mail: gbmurat@yandex.ru

ЭКОНОМИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ СТРАТЕГИЧЕСКОГО АНАЛИЗА РИСКОВ ПРЕДПРИЯТИЙ

Ключевые слова: промышленное предприятие, стратегические риски, имитационное моделирование, условия неопределённости.

В настоящее время характер и содержание хозяйственной деятельности на предприятии определяются формами и методами стратегического управления, формирование эффективной методологии которого в значительной степени обуславливаются методами и средствами анализа и управления стратегическими рисками в условиях неопределённости и нестабильности рыночного окружения. Среди этих методов одно из главных мест занимают экономико-математические модели, воплощённые в программные продукты. Авторами статьи предложен вероятностный подход к оценке стратегических рисков промышленных предприятий при их функционировании в условиях стохастической неопределённости влияний внешней и внутренней среды. Построен комплекс экономико-математических моделей, позволяющих учитывать условия неопределённости на основе статистической обработки ретроспективных данных. Приведена концептуальная схема постановки задачи количественного анализа рисковых ситуаций в условиях неопределённости. В связи с тем, что построение аналитической модели, отображающей зависимость коэффициента риска от изменения величин прибыли и убытков в условиях неопределённости вызывает при исследовании значительные трудности, в комплекс построенных экономико-математических моделей включена имитационная модель. Имитационная модель воспроизводит изменение величин прибыли и убытков промышленного предприятия в течение планируемого периода. Для прогнозирования изменения величин прибыли и убытков промышленного предприятия применён метод статистических испытаний, позволяющий генерировать возможные значения случайных величин по заданному закону распределения. Разработанные экономико-математические модели получили программное воплощение с удобными интерактивными интерфейсами, позволяющими в диалоговом режиме вводить исходные данные. Работа комплекса программ продемонстрирована в ходе проведения на нём компьютерных экспериментов, показывающих результаты анализа.

Введение

Поставленные в настоящее время задачи ускорения экономического роста российской экономики обуславливают необходимость повышения эффективности управления на всех её уровнях. В этой связи одним из базовых направлений стратегического управления промышленными предприятиями, как основного звена экономики, является развитие инструментария анализа рисков, позволяющего адекватно реагировать на изменения воздействий внутренней и внешней среды. Существующее экономическое и политическое положение российской экономики диктует необходимость применения новых подходов к созданию инструментария риск-менеджмента, базирующегося на экономико-математическом моделировании и программной реализации его результатов с последующем проведением компьютерных экспериментов при оценке неблагоприятных ситуаций и вызванных ими последствий в виде потерь и убытков.

Цель исследования. Разработка и применение нового инструментария риск-менеджмента для оценки нестабильных условий функционирования современного предприятия.

Материал и методы исследования

В научных публикациях по проблемам анализа рисковых ситуаций представлен широкий спектр результатов исследований. Методологическим, организационным и технологическим аспектам риск-менеджмента посвящены исследования К.В. Балдина, С.Н. Воробьёва [1]. Авторами предложены методы системного анализа и математического моделирования при оценке рисковых

ситуаций. Вопросы теории и практики риск-менеджмента на предприятии освещены в работе Е.Н. Станиславчик [2], Г.В. Черновой [3], Э.А. Уткина и Д.В. Фролова [4]. Вопросы инвестиционного менеджмента в условиях риска отражены в исследованиях Л.Г. Матвеевой, А.Ю. Никитаевой, О.А. Черновой, Е.Ф. Щипанова [5]. Проблемам разработки комплекса мер эффективного управления взаимодействия государства и бизнеса в условиях кризиса посвящены работы Т.В. Игнатовой [6, 7].

Результаты исследования и их обсуждение

Рассмотрение трудов в сфере исследований рисковых ситуаций и создания инструментария риск-менеджмента позволил декомпозировать подходы к разработке количественных методов анализа на два класса: детерминированные и стохастические методы. В данной статье авторами предложены экономико-математические модели для анализа рисковых ситуаций, функционирующие в условиях стохастической неопределённости. При этом уровень риска оценивается интегральным показателем «Коэффициент риска», вычисляемого как отношение

$$K_i = \frac{PR_i}{UB_i}$$

ожидаемой прибыли PR_i к величине и ожидаемого убытка UB_i при сравнении различных вариантов стратегических ориентиров, на которые нацелено предприятие. Коэффициент риска K_i показывает величину дохода, приходящегося на один рубль убытка. Концептуальная схема задачи рискменеджмента с кибернетических позиций приведена на рис. 1.

На схеме, представленной на рис. 1 входными управляемыми переменными являются варианты стратегических ориентиров S_i , i=1,k предприятий. Величины прибыли PR_i и убытков UB_i при выборе стратегии S_i изменяющиеся случайным образом и выступают в роли возмущений.

Выходными параметрами являются коэффициенты стратегического риска K_i при выборе стратегического ориентира S_i . Задача риск-менеджмента состоит в выборе такого стратегического ориентира S_i , при котором коэффициент риска K_i был бы оптимальным:

$$\forall S_i \in S, \exists S_i^* / K_i(S_i^*) = opt(K_i(S_i)).$$

Стратегический ориентир развития промышленного предприятия определяет направление его развития, включая цели и методы их достижения в перспективе. Таким образом, стратегия управления риском должна быть согласована со стратегией внутрифирменного планирования промышленного предприятия. Стратегии завоевания рынка или поддержания сложившегося на рынке имиджа организации и сохранения финансовой устойчивости влекут за собой различные варианты стратегии риска. Авторами предложен комплекс экономико-математических моделей $\Omega = \langle \omega_1, \omega_2 \rangle$ для количественной оценки стратегического риска. Комплекс Ω включает в себя следующие компоненты:

 ω_1 — модели построения эмпирических законов распределений случайных величин PR, и UB, исходя из выборочных данных;

 ω_2 — имитационная модель оценки коэффициента стратегического риска.

Эмпирические законы распределения случайных величин PR_i и UB_i строятся на основе использования

Рис. 1. Концептуальная схема риск-менеджмента

статистических данных, которые собраны в виде выборок

 $PR_i = \{z_{i1}, z_{i2}, ..., z_{in}\}, \ UB_i = \{r_{i1}, r_{i2}, ..., r_{in}\}$ из генеральных совокупностей. В выборках переменные z_{ij}, r_{ij} означают величины ежедневных значений соответственно прибылей и убытков при выборе стратегического ориентира $S_i, i=1,k,j=1,n$. Построение законов распределения осуществляется в следующей последовательности действий. Сначала определяются размахи варьирований величин PR_i и UB_i , как разности

$$\Delta(PR_i) = \left(z_i^{\text{max}} - z_i^{\text{min}}\right),$$

$$\Delta(UB) = \left(r_i^{\text{max}} - r_i^{\text{min}}\right),$$

где z_i^{\max} , r_i^{\max} — максимальные, z_i^{\min} , r_i^{\min} — минимальные значения выборочных данных величин

$$\begin{split} PR_i &= \{z_{i1}, z_{i2}, ..., z_{in}\} \\ &\text{w } UB_i = \{r_{i1}, r_{i2}, ..., r_{in}\} : \\ z_i^{\max} &= \max_{\forall j} \left(z_{ij}\right), r_i^{\max} = \max_{\forall j} \left(r_{ij}\right), \\ z_i^{\min} &= \min_{\forall j} \left(z_{ij}\right), r_i^{\min} = \min_{\forall j} \left(r_{ij}\right). \end{split}$$

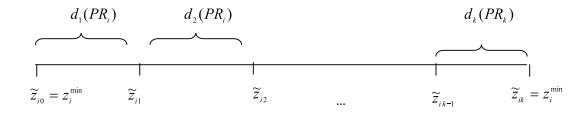
Размахи варьирований $\Delta(PR_i)$ и $\Delta(UB_i)$ делятся на k одинаковых отрезков $d_i(PR_i)$

и $d_j(UB_i)$, длина которых вычисляется в виде отношений

$$\delta(PR_i) = \frac{z_i^{\max} - z_i^{\min}}{k}; \delta(UB_i) = \frac{r_i^{\max} - r_i^{\min}}{k},$$

а координаты концов полученных отрезков \tilde{z}_{ij} и \tilde{r}_{ij} , j=0,k определяются исходя из выражений (рис. 2):

$$\tilde{z}_{ii} = z_i^{\min} + j \cdot \delta(PR_i);$$


$$\tilde{r}_{ii} = r_i^{\min} + j \cdot \delta(UB_i).$$

Затем вычисляются координаты середин полученных отрезков:

$$\hat{z}_{ij} = \tilde{z}_{i0} + \frac{2i-1}{2} \cdot \delta(PR_i);$$

$$\hat{r}_{ij} = \tilde{r}_{i0} + \frac{2i-1}{2} \cdot \delta(UB_i).$$

Эмпирические законы распределения случайных величин PR_i и UB_i представляют собой интервальные ряды распределения, приведённые в табл. 1 и 2. В первых строках табл. 1 и 2 приведены величины середин интервалов \hat{z}_{ij} и \hat{r}_{ij} , определяемые по ранее приведённым формулам. Вторые строки таблиц содержат относительные частоты попадания случайных величин PR_i и UB_i в заданные интервалы.

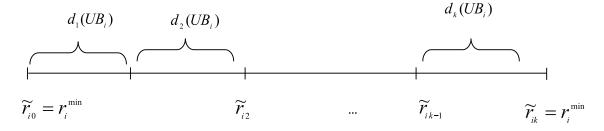


Рис. 2. Схема декомпозиции диапазонов изменений величин PR_i и UB_i на отрезки длиной соответственно $\delta(PR_i)$ и $\delta(UB_i)$

Таблица 1 Эмпирический закон распределения случайной величины PR_i

\hat{z}_{ij}	\hat{z}_{i1}	\hat{z}_{i2}	\hat{z}_{i3}	 \hat{z}_{ik}
$\underline{m_{j}(PR_{i})}$	$\underline{m_1(PR_i)}$	$\underline{m_2(PR_i)}$	$m_3(PR_i)$	 $\underline{m{m}_kig(m{PR}_iig)}$
$\mid n \mid$	n	n	n	n

Таблица 2 Эмпирический закон распределения случайной величины UB_i

\hat{r}_{ij}	\hat{r}_{i1}	\hat{r}_{i2}	\hat{r}_{i3}	 \hat{r}_{ik}
$\frac{m_j \left(UB_i \right)}{n}$	$\frac{m_1(UB_i)}{n}$	$\frac{m_2(UB_i)}{n}$	$\frac{m_3(UB_i)}{n}$	 $\frac{m_k\left(UB_i\right)}{n}$

В табл. 1 и 2 величины

$$\frac{m_j(PR_i)}{n} \le \frac{m_j(UB_i)}{n}, \ j = \overline{1,k}$$

представляют собой относительные частоты попадания значений z_{ij} и r_{ij} случайных величин $P\underline{R_i}$ и UB_i в интервалы $d_i(PR_i)$, $d_i(UB_i)$, l=1,k, схематично представлены на рис. 2.

Построенные эмпирические законы распределения, формально описаны как отображения

$$\Psi(PR_i): \left\{z_{ij}\right\}_{j=1}^n \to \left\{\frac{m_j(PR_i)}{n}\right\}_{j=1}^n;$$

$$\Psi(UB_i): \left\{r_{ij}\right\}_{j=1}^n \to \left\{\frac{m_j(UB_i)}{n}\right\}_{j=1}^n;$$

и используются в качестве исходных данных моделью ω_2 для генерирования возможных значений случайных величин PR_i и UB_i . Генерация возможных значений случайных величин PR_i и UB_i осуществляется по методу статистических испытаний Монте-Карло на основе использования случайных чисел, равномерно распределённых на отрезке [0, 1]. Законы распределения вероятностей $\Psi(PR_i)$ и $\Psi(UB_i)$ участвуют в построении интервалов, дли-

ны которых соответствуют величинам относительных частот

$$p_{j}(PR_{i}) = \frac{m_{j}(PR_{i})}{n}$$

и
$$p_j(UB_i) = \frac{m_j(UB_i)}{n}$$
, $j = \overline{1,k}$ (рис. 2).

Алгоритм функционирования модели ω_2 приведён на рис. 3. Планируемый период исследования, в течение которого оценивается величина стратегического риска, задаётся в интерактивном режиме. В конце цикла определяется величина риска выбранного варианта стратегического ориентира по формуле

$$K = \frac{\sum_{i=1}^{N} K_i}{N},$$

где
$$K_i = \frac{PR_i}{UB_i}$$
.

Математические модели ω_1 и ω_2 получили программную реализацию в виде пакета прикладных программ «Risc-Menedger». Интерфейс программного средства представлен на рис. 4.

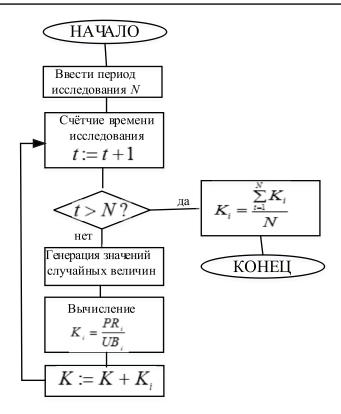


Рис. 3. Алгоритм функционирования имитационной модели ω ,

Puc. 4. Интерфейс программного средства «Risc-Menedger»

Пункт «Ввод данных» выполняет ввод выборок из генеральных совокупностей, характеризующих случайные величины прибыли PR_i и убытки UB_i . По введённым выборочным данным строятся законы распределения случайных вели-

чин PR_i и UB_i , в соответствии с которыми генерируются по методу статистических испытаний прогнозируемые значения прибылей и убытков предприятия, а также определяются прогнозируемые значения коэффициентов риска.

На базе использования программного средства «Risc-Menedger» авторами продемонстрирована оценка стратегического риска при выборе варианта стратегического ориентира в условиях рисковых ситуаций. Исследования основаны на статистических данных о значениях случайных величин «Прибыли» *PR* и «Убытки» некоторого промышленного предприятия «XXX», приведенных табл. 3 за год, предшествующий планируемому.

С помощью комплекса программ «Risc-Menedger» для описания статистических данных, приведённых в табл. 3, построены эмпирические законы распределения вероятностей (рис. 5) и определены значения коэффициентов риска (рис. 6).

Построенные экономико-математические модели и основанные на них программные средства позволяют усовершенствовать механизм управления хозяйственными рисками в условиях неопределенности и нестабильности рыночного окружения.

Таблица 3

Статистические данные случайной величины PR и UB

Прибыль			Убытки		
175133	135687	142259	4769	8620	2239
214788	67845	157845	10467	324	157
98523	56783	117638	5680	769	7834
82678	125398	203465	2307	398	203

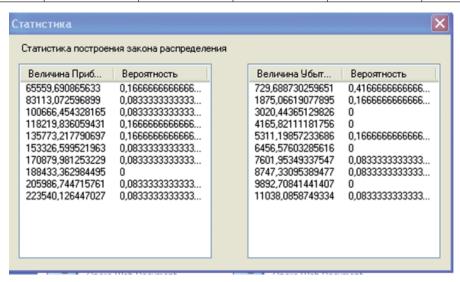


Рис. 5. Эмпирические законы распределения случайных величин PR и UB

Рис. 6. Значения коэффициентов риска, полученные в программе «Risc-Menedger»

Выводы

В статье получены следующие научные результаты.

- 1. Предложен комплекс экономико-математических моделей, позволяющий давать количественную оценку стратегических рисков при выборе стратегических ориентиров развития промышленного предприятия на основе имитации процессов изменения текущих прибылей и убытков в условиях неопределённости.
- 2. Осуществлена программная реализация построенных экономико-математических моделей.
- 3. Произведены компьютерные эксперименты на созданном программном продукте с целью оценки стратегических ориентиров развития предприятия.

Библиографический список

- 1. Балдин К.В., Воробьев С.Н. Риск-менеджмент: учебное пособие. М.: Эксмо, 2006. 368 с.
- 2. Станиславчик Е.Н. Риск-менеджмент на предприятии. Теория и практика. М.: Ось-89, 2002. 80 с.
- 3. Чернова Г.В. Практика управления рисками на уровне предприятия. СПб.: Питер, 2001. 76 с.
- 4. Уткин Э.А., Фролов Д.А. Управление рисками предприятия. М.: ТЕИС, 2003. 247 с. 5. Матвеева Л.Г., Никитаева А.Ю., Чернова О.А., Щипанов Е.Ф. Инвестиционный менеджмент в условиях риска и неопределенности. М.: Издательство Юрайт, 2017. 298 с.
- 6. Игнатова Т.В. Формирование комплекса мер управления антикризисным взаимодействием ударства и бизнеса // Российское предпринимательство. – 2012. – № 5(203). – С. 11–16.
- 7. Игнатова Т.В., Черкасова Т.П. Институциональные концепции экономического роста и их модернизации // Государственное и муниципальное управление. Учёные записки СКАГС. – 2011. – № 2. – С. 57–58.